МЕТАЛЛОРЕЖУЩИЕ ИНСТРУМЕНТЫ И ИНСТРУМЕНТАЛЬНАЯ ОСНАСТКА

Практические задания

Выбор варианта задания осуществляется по первой букве фамилии студента:

Первая буква фамилии студента	A-B	Г-Е	Ж-3	И-К	Л	M	н-о	П-Р	С-Я
Номер варианта	1	2	3	4	5	6	7	8	9

Решение заданий оформляется в виде таблиц, как показано ниже в разделе «Примеры решения заданий».

Задание 1

Прямозубая цилиндрическая фреза имеет диаметр D, число зубьев z и работает с глубиной резания t. При обработке заготовок наименьший суммарный срез, снимаемый фрезой, соответствует моменту входа очередного зуба в обрабатываемый материал, а наибольший — моменту выхода зуба.

Определите соотношение наименьшего и наибольшего суммарных срезов в процессе цилиндрического фрезерования, используя данные из табл. 1.

Таблица 1. Исходные данные к заданию 1

Вариант	1	2	3	4	5	6	7	8	9
D, mm	70	75	80	85	90	95	100	105	110
z		16		20			24		
t, mm	8	9	10	11	12	13	14	15	16

Задание 2

При продольном точении цилиндрической заготовки применяют острозаточенный резец с главным углом в плане φ и вспомогательным углом в плане φ_1 , который работает с глубиной резания t и подачей s_0 .

Закон стойкости для этой операции имеет вид

$$v = \frac{140}{T^{0,2}t^{0,15}s_0^{0,45}}$$
, м/мин.

Поступило предложение изменить геометрию резца, скруглив его вершину радиусом $r_{\rm B}$. Дайте заключение, имеет ли смысл такое изменение с точки зрения производительности процесса резания, используя данные из табл. 2.

Высота микронеровностей обработанной поверхности (рассчитанная из геометрических соображений) при работе острозаточенным и радиусным резцами должна быть одинаковой, а период стойкости инструментов старой и новой геометрии должен быть не менее T_{\min} .

Таблица 2. Исходные данные к заданию 2

Вариант	1	2	3	4	5	6	7	8	9
$r_{\rm B}$, mm	0,4	0,5	0,6	0,7	0,8	0,9	1,0	1,1	1,2
$T_{ m min}$, мин.	85	80	75	70	65	60	55	50	45
<i>S</i> ₀ , мм/об.		0,5		0,	,6	0,	,7	0	,8
t, mm		3		2	1	4	5	(6
ф, град.	40			50 60		60			
φ ₁ , град.	15				20				

Примеры решения заданий

Задание 1

Исходные данные: диаметр фрезы $D=50\,$ мм; число зубьев фрезы z=18; глубина резания $t=7\,$ мм.

Решение

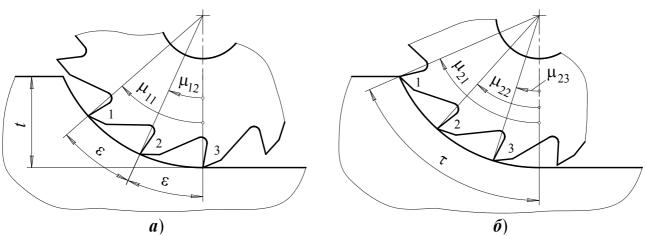


Рис. 1. Положение зубьев фрезы на дуге контакта при наименьшем суммарном сечении среза (а) и при наибольшем суммарном сечении среза (б)

№ п/п	Рассчитываемая величина	Обозначение, размерность	Расчетная формула	Результат расчета
1	Угол контакта зуба фрезы с заготовкой	τ, град.	$\tau = \frac{360}{\pi} \sqrt{\frac{t}{D}}$	42,88
2	Угол между зубьями фрезы	ε, град.	$\varepsilon = 360/z$	20
3	Число одновременно работающих зубьев	q	$q = \left[\frac{\tau}{\varepsilon} + 1\right]$	3
4	Углы поворота зубьев в момент снятия наименьшего суммарного среза (рис. 1, <i>a</i>)	μ_{1i} , град. $(i-$ номер зуба)	$\mu_{11} = 2\varepsilon$ $\mu_{12} = \varepsilon$ $\mu_{13} = 0$	$\mu_{11} = 40 \mu_{12} = 20 \mu_{13} = 0$
5	Углы поворота зубьев в момент снятия наибольшего суммарного среза (рис. $1,\delta$)	μ _{2i} , град. (<i>i</i> – номер зуба)	$\mu_{21} = \tau$ $\mu_{22} = \tau - \epsilon$ $\mu_{23} = \tau - 2\epsilon$	$\mu_{21} = 42,88$ $\mu_{22} = 22,88$ $\mu_{23} = 2,88$
6	Наименьшее суммарное мгновенное сечение среза	$f_{\mu 1, ext{ MM}}^2$	$f_{\mu 1} = bs_z \sum_{i=1}^q \sin \mu_{1i}$	0,985bs _z
7	Наибольшее суммарное мгновенное сечение среза	$f_{\mu 2}$, mm 2	$f_{\mu 2} = bs_z \sum_{i=1}^{q} \sin \mu_{2i}$	1,119 <i>bs</i> _z
8	Соотношение наименьшего и наибольшего суммарных срезов	k	$k = f_{\mu 1} / f_{\mu 2}$	0,880

Задание 2

Исходные данные: радиус вершины резца $r_{\rm B}=0.3$ мм; период стойкости резцов $T_{\rm min}=90$ мин; глубина резания t=3 мм; подача острозаточенного резца $s_{\rm o}=0.4$ мм/об; углы в плане острозаточенного резца $\phi=40^{\circ}$, $\phi_{\rm l}=10^{\circ}$.

Решение

№ п/п	Рассчитываемая величина	Обозначение, размерность	Расчетная формула	Результат расчета					
	Острозаточенный резец								
1	Высота микронеровностей обработанной поверхности	Rz, mm	$Rz = s_o \frac{\operatorname{tg} \varphi \cdot \operatorname{tg} \varphi_1}{\operatorname{tg} \varphi + \operatorname{tg} \varphi_1}$	0,058					
2	Скорость резания	υ, м/мин.	$v = \frac{140}{T_{\min}^{0,2} t^{0.15} s_{\rm o}^{0.45}}$	72,91					
3	Производительность процесса резания	Π , см 3 /мин.	$\Pi = ts_{o}v$	87,5					
	Резец с радиусной вершиной								
4	Подача	s _{or} , мм/об.	$s_{_{\mathrm O r}} pprox \sqrt{8r_{_{\mathrm B}} \cdot Rz}$	0,37					
5	Скорость резания	v_r , м/мин.	$v_r = \frac{140}{T_{\min}^{0,2} t^{0,15} s_{or}^{0,45}}$	75,15					
6	Производительность процесса резания	Π_r , см 3 /мин.	$\Pi_r = ts_{or}v_r$	84,3					
В	Вывод: $\Pi_r < \Pi$, поэтому замена острозаточенного резца радиусным не имеет смысла								